Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black-Scholes equations
نویسنده
چکیده
Abstract. The purpose of this survey chapter is to present a transformation technique that can be used in analysis and numerical computation of the early exercise boundary for an American style of vanilla options that can be modelled by class of generalized Black-Scholes equations. We analyze qualitatively and quantitatively the early exercise boundary for a linear as well as a class of nonlinear Black-Scholes equations with a volatility coefficient which can be a nonlinear function of the second derivative of the option price itself. A motivation for studying the nonlinear BlackScholes equation with a nonlinear volatility arises from option pricing models taking into account e.g. nontrivial transaction costs, investor’s preferences, feedback and illiquid markets effects and risk from a volatile (unprotected) portfolio. We present a method how to transform the free boundary problem for the early exercise boundary position into a solution of a time depending nonlinear nonlocal parabolic equation defined on a fixed domain. We furthermore propose an iterative numerical scheme that can be used in order to find an approximation of the free boundary. In the case of a linear Black-Scholes equation we are able to derive a nonlinear integral equation for the position of the free boundary. We present results of numerical approximation of the early exercise boundary for various types of linear and nonlinear Black-Scholes equations and we discuss dependence of the free boundary on model parameters. Finally, we discuss an application of the transformation method for the pricing equation for American type of Asian options.
منابع مشابه
An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black–Scholes equation
The purpose of this paper is to analyze and compute the early exercise boundary for a class of nonlinear Black–Scholes equations with a nonlinear volatility which can be a function of the second derivative of the option price itself. A motivation for studying the nonlinear Black–Scholes equation with a nonlinear volatility arises from option pricing models taking into account e.g. nontrivial tr...
متن کاملOn Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملProperties of utility function for Barles and Soner model
The nonlinear Black-Scholes equation has been increasingly attracting interest over the last two decades, because it provides more accurate values by considering transaction costs as a viable assumption. In this paper we review the fully nonlinear Black-Scholes equation with an adjusted volatility which is a function of the second derivative of the price and then we prove two new theorems in th...
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کامل